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SUMMARY

This paper presents the application of a class of multl-grid methods to
the solution of the Navier-Stokes equations for two-dimenslonal laminar flow

problems. The methods consist of combining the full approximation scheme -

full multl-grid technique (FAS-FMG) with point-, line-, or plane-relaxation
routines for solving the Navier-Stokes equations in primitive variables. The

performance of the multl-grid methods is compared to that of several single-

grid methods. The results show that much faster convergence can be procured

through the use of the multi-grid approach than through the various sugges-
tions for improving single-grid methods. The importance of the choice of

relaxation scheme for the multi-grid method is illustrated.

INTRODUCTION

In splte of the rapid development of computer hardware over the last two

decades, there is need for continuous improvement of computational techniques

In order to achleve better accuracy with minimal computational effort. In

most numerical methods, for fluid flow calculations, better accuracy is

obtained through the use of higher-order discretizations, or finer grid dlstri-
butlons, or a combination of both. With a large number of grid points, direct
methods of solution are often not feasible, because of memory limitations, so
an iterative method must be used. However, it has been found that Increasing
the number of grid points distributed in the computational domain leads to a
deterioration of the convergence rate. Thus, for most practical problems in
two- or three-dimensions, the grid distribution required for accurate solution

would lead to excessive computational times (of the order of hours for two-

dlmensional and days for three-dimensional calculations), even on very large

mainframe computers. Hence, the quest for more efficient solution procedures.

The multi-grid technique is emerging as a very promising tool for accelerating
the convergence rate of iterative procedures, especially for calculations with

very fine distributions.

*This paper is reproduced from the Proceedings of the Institution of
Mechanical Engineers, Part C, 1989, by permission of the Council of the

Institution.
tWork funded under Space Act Agreement C99066G.



The technique for acceleratlng convergence of an Iteratlve procedure

through the use of multlple grids was applled as early as 1935 by Southwell
(ref. I). Other works along similar 11nes were reported by Southwell (refs. 2

and 3), Stiefel (ref. 4), Federenko (ref. 5) and Wachspress (ref. 6), among

others. These were all two-grld level methods. The Idea of utilizing fully

multiple-grld levels was introduced by Federenko (ref. 7) for a Polsson-type

problem on a rectangular gird, and the approach was generallzed by Bakhalov

(ref. 8) to any second-order elliptlc operator with continuous coefficlents.
The first actual numerical computatlons with the full multl-grid technique

were reported by Brandt (ref. 9) for some boundary-value problems, using a
finite-dlfference approach. The multi-grid method has been applied with

flnite-element formulatlons by NIcolaldes (ref. lO). In most of these, llnear

differential equations were solved. More recently, multl-grid techniques for

solving nonlinear equations have been reported by Brandt (ref. 11), Ghla
et al. (ref. 12) and Vanka (ref. 13).

The previous studles show that the multi-grld methods are quite promising
but a lot of work still needs to be carried out in order to realize their full

potential. In the present study, the multl-grld technique is applied, with
some flnite-difference methods, to solve the Navier-Stokes equations for two-

dlmensional model flow problems. Their performance is compared with that of

various single-grid methods for varying grld dlstrlbutlons and Reynolds
numbers.

MATHEMATICAL MODEL

The Multl-grid Concept

Conslder a differential problem represented over a given domain D by the

linear equation"

L U(x) : F(x) (1)

where L Is the differential operator, U Is the unknown variable, F is a

known function, and # = (Xl, x2, ... xd) are the d independent variables of

the d-dlmenslonal problem. If the domain is divided Into a computatlonal

grid wlth spacing h, the finite-difference equivalent of the equations may be
written as:

Lhuh(_h) = Fh(_h) (2)

Solution of thls equation by an iteratlve procedure such as Gauss-Seidel,

Jacobi, line relaxatlon, etc., have been found to converge rapldly only for the
first few iterations, and more slowly thereafter. By considering a Fourier

analysis of the error-reductlon process of typical relaxation procedures,
Brandt (ref. ll) showed that they are only efflclent in smoothing out those

error components whose wavelengths are comparable to the grid mesh size.

Error components with longer wavelengths are smoothed out at comparatively
slower rates. Thus, the idea of the multi-grid technique is to smooth out

high frequency error components by performing a few iterations of the relaxa-
tion process on the fine grid. The remaining errors are then transferred to a

coarser grid where the correspondlng lower frequency error components are again
smoothed out in a few iterations. Further transfers are made to even coarser



grids and the process is repeated until all the error componentshave been
smoothedout. The results are then progressively transmitted back to the
finer grids. The overall effect of this procedure is that the various Fourier
componentsof the error are removedon grid meshesmost efficient for the pur-
pose, thereby accelerating the convergence rate on the fine grid on which the
solution to the finite difference equation Is sought.

Thus, in the multl-grid method, the computation is carried out on a
series of grid meshes DK with the correspondlng grid functions Uk, where

k = 1,2,3, ... M, with k = M representing the finest mesh, and the meshes

becoming coarser the lower the value of k. The mesh sizes usually differ by

a factor of 2, so that hk+ 1 = I/2 hk. Although this is not a requirement of
the multi-grid method, it enables slmple weightlng functlons to be employed in

Interpolatlon routines. The flnlte difference equation can then be written
for the kth grid as:

Lku k = Fk (3)

There are several algorlthms for implementlng the multl-grld idea, each

with several possible variations. One of the simplest is the correction scheme

(CS) which is applicable to linear problems. In thls scheme, the calculation
starts on the finest grid DM, and an approximate solution to equation (3) is

computed by a relaxation method such as the Gauss-Seidel, line relaxation, etc.

Unless the approximate sQlutlon Uk (fortuitously) satisfies the difference

equation (3) and the boundary conditions, there will be a residual Rk given

by:

Fk - Lku k = Rk (4)

A few iterations are performed on grid DM until the rate of reduction
of the residuals fails below a desired theoretical rate. The residuals are
then transferred by restrlction to the next coarser grld, DM-I and a correc-
tion function 6Uk-l is obtained by solving the equation"

Lk-16uk-I = I_-IRk (5)

where Lk-I is the difference operator on grld Dk-I and I_-I_ is the

restriction operator. If k-I is the coarsest grid, equation (5) is solved

completely on this grld, otherwise, the problem is transferred to the next

coarser grid as soon as the rate of smoothing of the residuals falls below the

re_u!red norm. Once equation (5) has been solved, the correction function
6UK-! is prolongated to grid Dk, and Uk is subsequently corrected as"

k k + i__16uk-IUne w = Uol d
(6)

where I__ 1 is the prolongation operator. Similar equations are employed to

transfer (prolongate) the intermediate corrections from the coarser grids,

once the prescribed convergence criteria have been satisfied. This process of

relaxation, restriction and prolongation is repeated until the desired accuracy
on the finest grid, DM is achieved.
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The schemedescribed above serves to illustrate the multl-grld idea, but

is inadequate for nonllnear problems such as the Navler-Stokes equation, of

interest here. For this, the full approximation storage (FAS) scheme is

employed.

In the FAS scheme, the full ap_rgxlmatlon Uk-I is stored on a coarse
grid rather than Its correction 6UK-I as in the CS scheme. Uk-I is given

by"

Uk-l = I_-l Uk + 6Uk-l (7)

where Uk is the fine grid approximation. The full approximation can be

obtained on the coarse grid by solving the corresponding FAS equation:

1 .k-I k-I (FkLK-I uk-I = Lk-<_k ukl + Ik -Lkuk) (8)

The fine grid approximation is then corrected as"

k k + IKK_I(Uk-I IK-I k d)Unew = Uold - Uol
(9)

Comparison of equations (5) and (8) shows that the CS and FAS schemes are

equivalent for linear problems. However, equation (8) is addltlonally suitable
for nonlinear problems, for which the former is not valld.

Present Implementation

In the present paper, the FAS-FMG (full approximation storage - full

multl-grld) aIgorlthm originally developed by Brandt (ref. II) is employed.

The procedure commences by solving iteratlvely until convergence, the finite
difference equations on the coarsest grid, using a relaxation routine. The

solution is then prolongated to the next finer grid, where it serves as the

Inltlal approximation of the solution to the difference equations on this grid.

Improved solutions are obtained by applying the relaxation routine on thls

grid, until the smoothing rate falls below a desired value. The optimum value

was found by numerical experiments to be a rate of reduction of the normalized

average residual of 0.8 (i.e., Rn+i/Rn _ 0.8). Otherwise, the task of smooth-

ing the residuals is transferred to a coarser grid and the FAS scheme already

described is employed. This rate happens to correspond to the theoretical

smoothing rate computed by Brandt (ref. ll) for the Navier-Stokes equation.
The iteration on each grid level is continued until the prescribed convergence
criterion is satisfied, at which time, the solution is transferred to the next

finer grid level and the whole process repeated. The solution process is ter-
mlnated on satisfying this criterion at the finest grid level DM.

It is only necessary to iterate until full convergence on the finest and

coarsest grids. Otherwise, the finer grid residuals are considered suffici-

ently smoothed once the corresponding coarse grid errors have been reduced to
about 20 percent of the restricted values. Then the corrections are prolon-

gated back to the fine grid. In the present work, Fully adaptive, full multi-

grid cycles are employed, whlch are controlled solely by the aforementioned
convergence criteria and the desired smoothlng rate. There is, however, a
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wide range of posslble multi-grid cycles, some of which are discussed by

St_ben and Trottenberg (ref. 14).

Restriction and Prolongation

Restriction and prolongation routines are required to transfer the fine

grld approximations and residuals onto the coarse grid, and the coarse grid

corrections onto the fine grid, respectively. The operators were denoted by

I_-l and I__ 1, respectlveIy. In the present work, a staggered grid is

employed for the velocity components and the pressure, as shown In figure I.

So, the transfer operators would be different for each of the variables U,V,P

and for the residuals RV and Rv. The restrictions are made by averaging the
neighboring flne grid values, and the prolongations by applying billnear inter-

polatlon to the closest set of coarse grid values.

Relaxatlon Methods

The Navler-Stokes equatlons can be written for two-dlmenslonal steady,
laminar plane flow as"

B(UU) 8(UV) I BP ,/B2U B2U_

ax + ay - .\ax2+ (i0)

(11)

and the contlnuity equation as:

@U @V

+ T# : 0 (12)

Using the sta_ered grid system (fig. I), these equations can be dlscre-
tlzed for the l,j =n cell glvlng, in each case:

u u _ Au uAcUl, j : AeUi+1, j + A Ui_l, j + nUl,j+l + AsUl,j_ 1 +
PI-I,J - PI,j

PAXi-I/2,j

(13)

PI,j-1 - PI,J (14)

Ul+l, j - Ui, j Vl,j+l - VI, j
+

axi,j aYl,j

= 0 (15)

where the coefficients Ac, Ae, An , etc., are derived using the hybrid
(central/upwind) dlfference scheme proposed by Spaldlng (ref. 15). The actual
expresslons can be found in Vanka (ref. 13).
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Slmllar expressions can be written for the other face velocltles by

Increaslng the Indices of I and j by one In equatlons (13) and (14),

respectively. Thus:

u u _ Au uAcUi+I, j = AeUI+2, j + A Ut, j + nUt+1,j+1 + AsUl+l,j_ 1 +
(16)

v = A_V I + AVVl + A_V I + A_VI +AcVI ,j+l +1 ,J+l -I ,j+l ,J+2 ,J

PI,j - PI,J+I

PAYl,J+I/2

(17)

We now assume that the velocltles on the rlght-hand side of equations

(13), (14), (16), and (17) are known, so that the face velocities (on the left-

hand slde) can be evaluated once the pressures are found. The method for find-

Ing the pressures characterizes the relaxatlon scheme. In equatlons (13) to
(17), there are four unknown velocltles and flve unknown pressures. Each of

these can be split Into known and unknown components, conslsting of guesses
(*)'s, and corrections (')'s. Thus,

ui,j: u_,j+ ui,j

= U _ I

Ul+l,j l+l,J + Ul+l,j

vI ,j -- v_,j + vI ,j

vl,j+I : v_,j+I + vl,j+I

(18)

and

PI,J = P_,j + PI,J (19a)

= p* P' (19b)
Pi+l,J l+l,J + I+1,j

* (19c)
PI-I,J = Pi-I,J + PI-I,j

Pi,j+l : P_,j+l + Pi,j+l (19d)

Pi,J-I : P_,j-I + PI,J-I (19e)

We now need to solve the system of equations (13) to (17) for the correc-

tlons, I.e., the (')'s

Plane Relaxatlon (SIM)

In equations (13), (14), (16), and (17), each of the velocity corrections

Is expressed solely in terms of known velocities and pressures and unknown

pressure correctlons, so that we can substitute these equatlons into equation

(15) to yield the pressure correction equatlon. Thls equation will have five
unknowns, and it will be necessary to generate the equations at all the inter-

nal nodes in the two-dlmensional plane in order to form a closed set.



The penta-dlagonal matrix equation set has the Form"

EI,JPI,j = AI,JPI+I,J + BI,jPI_I, j + Cl,jPI,j+ l + DI ,jPI ,j_l
+ F (20)

l,J

where

Ai,J = I/IpA_i+I, j axl,j axi+(112),j I

ijaxl,jaxI-(I/2),J

CI, j = 1 PAci,j+ I AYl,J I,j+(I/2)

/I v AYI,J AYI ,J-(I/2) 1Di,j = I PAcl,j

Ei,j = A1,j + BI,j + Cl,j + DI,j

and

FI,j : RI,j + l ax i,j l,j l,j 0 )- RI+ 1,j ci+1, j

/ C v/ vv )+ I AYl,J l,j c1,j - Ri,j+I Cl,j+l

The R's represent the residuals of equations (13) to (17). The equa-

tlon set must be solved slmultaneously for all internal grld nodes In the two-

d|menslonal plane. The strongly impllclt method (SIM) of Stone (ref. 16) Is

applied with an Iteratlon parameter of 0.9 for the soIutlon. Once all the

pressure corrections are obtained, the velocity correctlons can be computed
from:

01_I_u+(_ _i)10_x,]l_u= I,j J j -(l/2) j.... c i ,j
(21)

U]+I,j l+1,j + Pi,J i+l,j +(I/2)j ci+i, j

vl,j= [_y,j,(_i,j_,
, , c i ,j

(23)

vl.j+,=[._.j+,+("i I ]/_v,j - PI,j+I) p AYl,J+(I/2) ci,j+l
(24)



Due to the nonllnearity of the momentum equations It may be necessary to

under-relax the velocity corrections so that only a fraction of them Is uti-

lized In equation (18). The usual practice of Impllclt under-relaxatlon Is

employed here. The optimum under-relaxatlon factor was Found to be 0.9.

Llne Relaxatlon (CLSOR)

Llne relaxatlon Is obtained, using a coupled, 11ne successive over-

relaxatlon scheme. If we presume that only the pressure corrections for nodes

lying along a llne (In the x- or y-dlrectlon) are unknown, all others are

known, presumably zero. Then there wlll be three unknown pressure corrections

and four unknown velocity corrections to be determined at each node. Equa-

tion (20) then reduces, for x-line relaxatlon, to one of the form:

EI,jPI, j = AI,jP_+I, j + Bi,jPI_I, j + Fi, j
(25)

Similar equations need to be written for the other Internal nodes along the

line, in order to form a closed set. The system of tri-dlagonal equations is

then solved simultaneously, with a trl-dlagonal matrix algorithm (TDMA), which
is efficient and has a low operation count. The velocity corrections are sub-

sequently computed, for all the nodes lying along the line, using a variant
I

of equations (21) to (24) In which the pressure corrections P1,J-l and
!

Pi,i+Iu have been set equal to zero. The procedure Is then repeated for the
other parallel llnes in the computational domain. Y-11ne relaxatlon can be

performed in a simllar manner. The optimal under-relaxatlon factor was found
to be 0.6 for test case _ and 0.9 for test case 2.

Point Relaxatlon

This is the so-called symmetric coupled Gauss Seldel (SCGS) method pro-

posed by Vanka (ref. 13). It assumes that only the pressure correctlon at the

central node Is unknown so that there are five equations and five unknowns

(one pressure correction and four velocity corrections) to be determined at

each node. These equations can be solved algebraIcally, since simple manipula-

tions yield an expIIclt expression for the pressure correction. The velocity
corrections are then computed from a variant of equations (21) to (24) in

which all pressure corrections other than the central one are set to zero.

the procedure is repeated for all internal grid nodes. A lexicographic visit-

ing order, which is reversed in alternate iterations, was employed in the

present study. The optlmum under-relaxatlon factor was found to be between 0.5
and 0.6 For this method. The SCGS differs from the SIVA (simultaneous variable

adjustment) method of Caretto et al. (ref. 17) only through the incorporation
of addltional unknown velocitles on the right-hand side in the latter. For

example, on the right-hand side of equations (13) and (14), respectively,

i and Vl,j+ I, are also considered unknown. Similarly, in equations (16)Ul+l_ 7) Uiand i and V1 i are considered unknown The explicit expression for
'_r 'i ithe central pressure cor ect on s more complex in SIVA.

Comparison of Relaxatlon Methods

In the present relaxation methods, the pressure-velocity coupling, inher-

ent in the momentum and continuity equatlons, Is retained. Further, all the
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veloclty components are obtained simultaneously. They differ from the SIMPLE

method of Patankar and Spalding (ref. 18), and proposed derivatives (refs. 19

and 20) which solve for the velocity components in a sequential or decoupled
manner.

The plane-relaxation method is the most Impllcit, and would normally be

expected to be the most stable, havlng also the fastest convergence rate. How-
ever, the coefficients of the equations requlre two-dlmensional storage arrays,

so that the computer memory requirements are high. On the other hand, the

polnt-relaxatlon method is the least Imp11cit, exhibiting a space decoupling

from neighboring grid points. The decoupllng effect Is reduced somewhat by

computing, at each node, a11 the four velocities on the faces of the control

volume. Hence, in a complete sweep of the computational domain, each velocity

is updated twice. However, no arrays are required to store any coefficient of

the equations. The line-reIaxatlon method lies in between. Only the velocl-

ties normal to the relaxation line are computed twice. Also, the coefficients

only need be stored along one line of grid nodes. The increase in memory

requirements Is thus minlma1.

The expected superiority of plane relaxatlon is not fully realized in the

present study, since the methods are applied to nonlinear problems. The equa-

tions are linearized and the coefficients have to be repeatedly updated as soon

as better values are available. The point-relaxatlon method ensures the most

rapid updating of coefficients, and the plane-relaxation method, the slowest.

Hence, the advantages of increased implicitness in the latter are offset, some-

what, by slower updating of coefficients, and vlce versa.

RESULTS AND DISCUSSION

Test Cases

Three test cases were chosen in order to evaluate the performance of the

present methods. The first is the laminar flow in a lid-driven square cavity

(see fig. 2(a)). The second case is the laminar flow through a backward facing

step with an expansion ratio of 2 (see fig. 2(b)). Flnally, the lid-drlven

cavity flow was computed in several cavities over a range of aspect ratios.

For case l, computations were performed at two Reynolds numbers, namely

lO0 and lO00, based on the velocity of the moving lld and the cavity width.

For case 2, computations were performed at Reynolds numbers (based on the mean

inlet velocity and channel height) of lO0 and 500 and aspect ratios L/H of

3 and 6, respectively. The longer aspect ratio of the computational domain was

due to the correspondingly longer recircu]ation length encountered in the
latter.

The final case compares the performance of the multl-grid methods in lid-

driven cavities with aspect ratios (B/H) ranging from I/6 to 6, each at a

Reynolds number of lO0. The aspect ratio was varied by changing H, while

keeping all other parameters unchanged.

In all these test cases, the same number of grid nodes was utilized is
both the x- and y-dlrections, so that the grid ceil aspect ratio would be the
same as the aspect ratio of the channel or cavity.



Comparisonof Single-Grld and Multl-grid Methods

In order to evaluate the performance of the present multl-grld methods,

their convergence characterlstlcs are compared with those of various single-

grid methods. Three additional slngle-grld methods are employed, namely, the

SIMPLE algorithm of Patankar and Spalding (ref. 18), an improved variant by
Issa (ref. 19) named PISO, and another by Van Doormaal and Ralthby (ref. 20)

called SIMPLEC. Full details of these methods can be obtained from the origi-

nal references and will not be repeated here. It suffices to mention that they

are all based on the llne-by-llne solution of the Navler-Stokes equations in a

decoupled manner. Thus, they dlffer from the present llne-relaxatlon method
which solves the Navler-Stokes equations, symmetrically along a llne, and In a

coupled manner.

Table I shows the comparlson of the CPU times and the number of iterations

requlred for convergence when the slx slngle-grld methods and three multl-grid

methods were applied to the lld-drlven square cavity flow. The results are

presented for six dlfferent grid levels. The convergence criterion in each

case is that the residual norm R < lO-5. R is defined as:

where

R2 + +
u Rv Rm

3 x (NI-2) x (NJ-2)

Ru

Rv

Rm

(NI-2)

sum of reslduals of the U-momentum equation at all modes

sum of residual of the V-momentum equatlon at all nodes

sum of residual mass sources at all nodes

number of internal grid nodes In the x-dlrectlon

(NJ-2) number of internal grid nodes in the y-dlrectlon

At this convergence level all methods gave the same results. In the columns

for the multi-grld methods, three values are presented. The first value repre-
sents CPU times on the Siemens 7881 Computer. Although some of the computa-

tlons were performed on the Deflnlcon DSI/780 processor, test computatlons
showed that these take 25 times longer, so the times have been duly converted.

The second value represents the number of iterations on the finest grid and

the third gives the total work units which Is the equivalent number of finest

grid Iterations of the total relaxatlon work performed on all the levels. The
latter is thus comparable to the number of iterations in the single-grid

columns.

The results show that among the single-grid methods which solve the equa-

tions in a coupled manner, plane relaxation produced convergence in the least

number of iterations, fo|lowed by line relaxation, and then point relaxation.
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However, it required the largest CPUtime per iteration, hence, total CPU
times are comparable for all methods. Contrary to expectations, the decoupled
single-grld methods generally resulted In faster convergence than the coupled
ones. This is probably due to the faster rate of updat|ng the coefficients In
the former, which appears to overweigh the disadvantages of solving the equa-
tions sequentially. Thls maynot apply to the multi-grld methods, since in the
decoupled procedure, the residuals, which have to be smoothedon the coarser
grids, are changedby the pressure correction equation In an inconsistent
manner.

Arakawaet al. (ref. 21) reported slight advantages for the coupled,
multl-grld methods over the decoupled ones. In general, the multi-grid meth-
ods converged faster than single-grid ones, especially for finer grids.
Figures 3 and 4 present log-log plots of the CPUtimes for convergence versus
the total numberof internal grid points. The slopes roughly approach 2 for
slngle-grld methods, but are approximately l for multi-grid methods, which
shows that the CPUtimes for convergence increases almost quadratically with
the numberof grid points in the latter, but only linearly in the former. It
Is this independenceof the computational work per grid point, on the level of
grid refinement that makesmultl-grid methods quite attractive for fine-grld
calculations. Usually, less than 30 iterations were required on the finest
grld. However, in contrast to the single-grid methods, the multi-grid methods
showedslower convergence with increase in Reynolds number, in the lid-driven
square cavity flow. Typically, 1.5 to 2.5 times more computational work was
required at Re = lO00, as comparedwith Re = lO0. This coincides with the
findings of Vanka (ref. 13) and Barcus et al. (ref. 22).

At hlgher Reynolds numbers, the coarser grids appear to becomeineffi-
cient in smoothing out finer grid errors. The point-relaxation method pro-
duced the fastest convergence of all multi-grid methods. With the additional
advantage of minimal memoryrequirements to store the coefficients of the
governing equations as comparedto the other methods, it is clearly the best
for this problem. For the finest grid (162 x 162), the ratio of CPUtimes
(best single-grid/best multi-grid) was 81 at Reynolds numberof lO0, but only
14 at Reynolds numberof 1000. Computercore memoryrequirements were
1.50, 1.52, and 3.30 M Bytes for the multi-grid codes with point, line, and
plane relaxations, respectively.

Figure 5 shows somecomparisons of the computedvelocity profiles with
those of Ghia et al. (ref. 12) at Reynolds numbersof lO0 and lO00. The agree-
ment is seen to be perfect, within the limits of accuracy of the plots. The
predicted sizes and strengths of the primary, secondary, and tertlary vortices
also comparequite we11. Figure 6 shows the streamline plots at both Reynolds
numbers.

Table II shows the comparison of the CPUtimes and the number of itera-

tions required for convergence for the backward-facing step flow problem. The

comparisons are for 6 grid levels. The results show that, for single grids,

the point-relaxatlon method exhibited the slowest convergence rate, and this

became worse, the nigher the grid aspect ratio. The coupled line- and plane-

relaxation schemes had better convergence rates; albeit worse than the better
decoupled methods. The deterioration of the convergence rate of the point-

relaxation scheme with increased grid aspect ratio was even more pronounced in

the multi-grid version. Typically, there was a four- to six-fold increase in

II



the CPUtimes for convergence when the grid aspect ratio was increased from

3 to 6. Larger aspect ratios are required for higher Reynolds number computa-

tions slnce the recirculation zone and the recovery length Increased wlth
Reynolds number. Preliminary calculatlons showed that there was no Reynolds

number dependence of convergence rates in thls case. The multl-grld methods

using 11ne- and plane-relaxatlon schemes showed only modest increases in the

required CPU times. The Iine-relaxatlon scheme appeared to have the best over-

al] performance. Brandt (ref. _l) dld point out that point-re]axatlon schemes

would not be efficient for equations with large differences in magnitudes of

the directional coefficients, as would result from grids with high cell aspect

ratio. The asymptotic convergence rates of point-relaxatlon schemes such as
the Gauss-Seidel were shown to be inferior to those of line-relaxation schemes.

The present results show that the use of the appropriate multi-grid method

enabled the required CPU times, on the finest grid, to be reduced by factors

of up to about 20 and 13 for L/H = 3 and 6, respectively, as compared with the

best single-grid method. The factors are correspondingly lower for the coarser

grids. In fact, signiflcant advantages of the multl-grid methods on y occurred

for grids finer than 34 x 34. Below thls, the best multi-grid method might

converge slower than the best single-grid one. It should be noted, however,

that the multl-grid concept always resulted In faster convergence, if the same

relaxation scheme was utilized. Also, the Iinearlty of the CPU times for con-
vergence with the total number of grid nodes is again shown in the log-log

plots in figures 7 and 8. A useful measure of the utility of the multi-grid

technique is the ratio of the CPU times for best multi-grid method/ best

slngle-grid method. Table Ill presents thls ratio for the two test cases.

Finally, the three multi-grid methods were applied to the Iid-drlven

cavity flow at Reynolds number of lO0, but at various aspect ratios (B/H).

This test case combines aspects of the first two test cases; the flow reversar
in the cavity with hlgh cell aspect ratios. The computed results are similar

to those of Pan and Acrivos (ref. 23), with a single central vortex at the low

aspect ratios and multlple central vortices at higher ratios of 3 and 6. The

convergence characteristics are presented in table IV. The convergence rates

for the three calculation methods are similar for aspect ratio of I. On

decreasing the aspect ratlo to I/6, through I/3 all methods experienced much

slower convergence rates. CPU times for convergence increased by factors of
7, 34, and 18, for the calculation methods wlth plane-, line-, and point-

relaxation schemes, respectively. Similarly, on increasing the aspect ratio
to 6, CPU times for convergence increased by factors of 6 and 7 for the plane-

and point-re}axation schemes, respectively. No convergence so]ution was

obtained with the line-relaxation scheme. The residual norm decreased by two

orders of magnitude and, then subsequently, oscillated about this value. Line

relaxation is, of course, directionally sensitive. It is most effective along

lines perpendicular to the main flow direction, sweeping from upstream to down-

stream. In the present flow problems, the relaxation line would be mostly par-
allel to the velocity vectors when the aspect ratio is I/6, but perpendicular

to them when the aspect ratio is 6. So the s]owing down of the convergence

rate in the former is explicable. But in the latter, the velocity vectors

have reversed directions near the lid and on the opposite side of the cavity.

Whereas, line relaxation is carried out from upstream to downstream with

respect to the flow in the top half, the situation is reversed with respect to
the flow in the bottom half. This latter situation is believed to be the

cause of the oscillation and lack of convergence in this case. The directional

sensitivity of line-relaxation schemes make them unsuitable for use in general

purpose codes.
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Point- and plane-relaxatlon schemesdo not have such dlrectlonal sensltlv-
Ity, but the former Is more adversely affected at a11 aspect ratios differing
from unity. P1ane-relaxatlon schemesthus appear to be the safest compromise
for a general-purpose multl-grid code. But there Is a penalty to pay for
_ncreased computer core memoryrequirements. Polnt-relaxatlon schemeswould,
of course, be best if large cell aspect ratios can be avoided.

CONCLUSION

It has been shownthat considerable improvements In convergence rates can
be achieved In two-dlmenslonal fluid flow computations on flne grids by
employing the multl-grid concept. For nearly homogeneousdifference equations,
the multl-grid method with a point-relaxatlon schemeproposed by Vanka
(ref. 13) gives the best performance in terms of both CPUtimes and computer
memoryrequirements. However, thls method is inadequate for solving inhomoge-
neous equatlons, resulting from large grld aspect ratlos, or similar. In these
cases, a llne- or plane-relaxatlon schemeshauld be utilized wlth the multi-
grld method, but the computer memoryrequirements would Increase accordingly.
In the particular cases presented here, plane relaxation appeared to be the
most robust although it would not necessarily procure the fastest convergence
In all problems.

The multl-grld methods showeda linear Increase In CPUtimes for conver-
gence, as the computational grld was increased, whereas the slngle-grld
methods exhlblted a nearly quadratic Increase. Thus, for very fine-grld compu-
tations multl-grid methods would always be better than any single-grid method.
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TABLE I. - CPU TIMES AND NUMBER OF ITERATIONS FOR LAMINAR FLOW IN A LID-DRIVEN SQUARE CAVITY

(a) Re : IO0

Multi-grid bGrid Single-grid a

(NIx NJ)
SIMPLE SIMPLEC CLSOR SIM SCGS + FMG CLSOR + FMG SIM + FMG

0.4129

1.4155

13.51162

1841548

255911848

NIA c

0.5142

1.1138

5.5161

651187

8851625

II 800/2000

PISO 5CGS

0.4/18 0.3127

1.1/26 1.9/91

5.9/47 23.8/324
70/42 254/853

1010/472 3240/2786
N/A c N/A c

0.1/23
1.3/62

16.41194
219/641

2931/2t28
N/A c

0.4117
2.0/54

16/183
255/617

3600/1755
N/A c

0.8/19/35
3.9/19/43

13/14/34
38/12/27

145/11/23

7x 7

12 x 12

22 x 22

42 x 42

82 x 82

162 x 162

1.0/30/43 2.8/16/69
4.1/20/44 7.5/14/75

15/17138 16115/38
55/15/34 59/14/32

219/15/34 245/11/41

(b) Re = 1000

7 x 7

12 x 12

22 x 22

42 x 42

82 x 82

162 x 162

0.5/37

1.3/49

8.3/97

81/244

950/687

N/A c

0.6/53
1.2/45
5.3/59

J8/111
348/248

4496/750

0.4/21 0.4/34

1.2/29 1.5/68

4.7/36 14.3/192

34/69 206/702
373/182 3045/2538

4957/549 N/A c

0.2/29

1.4165

14.3/168

145/428

149911086

NIA c

0.5/22

1.5/43
10/108

107/269
1492/728

N/A c

0.9/36/40

4.6/20/49

26/23/68

102/18166

325/13/52

aCPU time (sec) on S78811number of iterations.

bCPU time (sec) on S7881/number of fine grid iterations/total work units.

CNot available due to excessive CPU time.

1.4/36/57 4.6/25/110
11.2/42/13 16/32/157

42/33/105 44/28/129
131/22/82 153/22/103
315/12/47 342/16/63

TABLE IT. - CPU TIMES AND NUMBER OF ITERATIONS FOR LAMINAR FLOW OVER A BACKWARD FACING STEP

(a) Re = 100, L/H = 3

Grid

(NIx NJ)

6x6

10 x 10

18 x 18

34 x 34

66 x 66

130 x 130

Single-grid a Multi-grid b

SIMPLE SIMPLEC CLSOR SIM SCGS + FMG CLSOR + FHG SIM + FMG

0.4/35

0.8/39

5.0/88

61/278

812/922
N/A c

PISO SCGS

0.4/13 0.I/36

0.7119 1.5/113

2.8/32 15/305

32/99 154/775
340/312 N/A c

N/A c N/A c

0.2/15
0.5/37
6.5/122

91/418
900/1031

N/A c

0.1/11
0.3/27
4.5/93

74/296
760/1020

N/A c

0.8/31/55

3.8/28/65

16/22/68

63/22/65

214/21/56

0.5/51
0.9/46

2.5/42

26/120

342/376

4400/1180

0.4/20/26

2.0/23/24

11/27/46

55/30/55

243/29/58

0.4/28134

2.3/24/43

12/23/56

56/25/62

257/26/67

(b) Re = 500, LIH : 6

6 x 6 0.4135 0.5152 0.4/18 0.41115 0.6116

I0 x 10 1.0148 1.0151 0.8/24 4.2/314 0.7/30

18 x 18 5.0/82 3.6/59 3.4/39 50/1022 4.0/68

34 x 34 74/338 28/123 401123 364/1846 50/229
66 x 66 1000/1100 371/404 502/387 N/A c 900/1031

130 x 130 N/A c 4490/1200 N/A c N/A c N/A C

aCPU time sec) on S7881/number of iterations.

bCPU time sec) on S7881/number of fine grid iterations/total work units.
CNot available due to excessive CPU Lime.

0.1/11

0.4/33

3.8/788

941354

964/1329

N/A c

2.8/75/181
17/78/274
87/55/345
358/51/365

1200/41/292
0,4/24/29 I

2.6127143
181371725
70/27/70

339/34/82

0.5/29/420

3.11331657

33166/169

95122/118

318125/90
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TABLE III. - RATIOS OF CPU TIMES

[Best single-grid/best multi-grid.]

Grid Case 1(a)

(NIx NJ)

12 x 12 1.4

22 x 22 1.4

42 x 42 5.0

82 x 82 23.3

162 x 162 81.4

Grid Case 2(a)

(NIx NJ)

10 x 10 1.3

18 x 18 1.3

34 x 34 2.4

66 x 66 6.2

130 x 130 20.6

Case 1(b)

1.3
1.0

1.3
3.4

13.8

Case 2(b)

1.8

1.3

1.6

5.3

13.2

TABLE IV. - PERFORMANCE OF MULTI-GRID METHODS IN LID-

DRIVEN FLOW IN CAVITIES WITH DIVERSE ASPECT RATIOS

Aspect Re = 100, 5-level multl-grid, 66 x 66 grid
ratio
(B/H) SCGS + FMG a

1/6 513/91/484
1/3 129/35/122

I 29/11137

3 56/27/54
6 189/97/179

CLSOR + FHG a

9531150/1088
152/ 581175

29/ 16/36
144/ 68/181

Oscillating,
no convergence

SIM + FMG a

23711221276
951 47/115

321 13/27
64/ 34165

18411111205

aCPU times (sec) on S78811number of fine grid itera-

tions/total work units.
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